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Abstract

In recent years, fault tolerant flight control systems have gained an increased

interest for high performance military aircraft as well as civil aircraft. Fault

tolerant control systems can be described as either active or passive. An active

fault tolerant control system has to either reconfigure or adapt the controller in

response to a failure. One approach is to reconfigure the controller based upon

detection and identification of the failure. Another approach is to use direct

adaptive control to adjust the controller without explicitly identifying the fail-

ure. In contrast, a passive fault tolerant control system uses a fixed controller

which achieves acceptable performance for a presumed set of failures.

We have obtained a passive fault tolerant flight control law for the F/A-18

aircraft which achieves acceptable handling qualities for a class of control sur-

face failures. The class of failures includes the symmetric failure of any one

control surface being stuck at its trim value. A comparison was made of an

eigenstructure assignment gain designed for the unfailed aircraft with a fault

tolerant multiobjective optimization gain. We have shown that time responses

for the unfailed aircraft using the eigenstructure assignment gain and the fault

tolerant gain are identical. _rthermore, the fault tolerant gain achieves MIL-

F-8785C specifcations for all failure conditions.



1 Introduction

1.1 Background

Aircraft flight control systems are designed with extensive redundancy to ensure a

low probability of failure. During recent years, however, several aircraft have expe-

rienced major control system failures. These have caused an increased interest in

fault tolerant flight control systems. The objective of fault tolerant flight control

is to control and safely land the aircraft in case of severely damaged or inoperable

control surfaces. The two approaches to fault tolerant control are active and passive

control. An active fault tolerant control system has to either reconfigure or adapt

the controller in response to the failure. One way is to reconfigure the controller

based upon detection and identification of the failure. Another way is to use direct

adaptive control to adjust the controller without explicitly identifying the failure. In

contrast, a passive fault tolerant control system uses a fixed controller which achieves

acceptable handling qualities for a given set of failures.

Several authors have utilized eigenstructure assignment to design reconfigurable flight

control systems. Gavito and Collins [1] used eigenstructure assignment to recover the

undamaged modal response under the assumption that the failure has been detected

and identified. Napolitano and Swaim [2] used eigenstructure assignment to remove

the lateral-longitudinal coupling induced by an asymmetric control surface failure.

Jiang [3] used eigenstrueture assignment to recover the dominant eigenvalues and

eigenvectors of an aircraft longitudinal control system which has undergone some

operating condition variations or system component failures. However, all of these

approaches require an on-line identification of the parameters of the plant after failure.

Jiang and Zhao [4] used eigenstructure assignment to design passive fault tolerant

controllers for actuator failures. This approach is based on robust regional eigenvahw

assignment with the addition of a precompensator. However, this design method re-

quires extensive redundancy. Gorrec et. al. [5] proposed a multimodel approach for

the landing phase of a large transport aircraft. This method uses a bank of models

covering the entire flight envelope. First, the authors design an initial gain for a cho-

sen original model. This gain is used to control all of the models and a nmltimodel

analysis is used to detect the worst model. Then, a quadratic optimization procedure

is used to improve the behavior of the worst model while keeping good performance

relative to the original model. However, the designer must be careful to avoid con-

flicting objectives.

We have obtained a new result for eigenstructure invariance when it is known which

surface is most likely to fail. We seek a constant gain output feedback controller such

that the dominant eigenstructure is invariant under this failure. We show mathemat-



ically that the solution is that the failed surfaceshouldnot be used. That is, if the
jth control surface will fail, then the jth row of the constant output feedback gain

matrix will be simply zero. For this purpose, first we derive a basis for the subspace

in which the eigenvectors of the failed system must lie. Then, we show that there

exists a constant output feedback gain matrix which yields an invariant dominant

eigenstructure both before and after failure. Finally, we prove that the jth row of this

feedback gain matrix will be zero.

We have obtained a passive fault tolerant flight control for a control surface failure

when it is not known in advance which surface will fail. We consider the linearized

lateral dynamics of F/A-18 aircraft. The class of control surface failures we consider

includes the symmetric failure of any one control surface being stuck at its trim value.

It is not known in advance which surface will fail. We computed an optimal feedback

gain using an off-line nmltiobjective optimization technique. A comparison was made

of an eigenstructure assignment gain designed for the unfailed aircraft with the fault

tolerant multiobjective optimization gain. We have shown that the time responses

for the unfailed aircraft using the eigenstructure assignment gain and the fault tol-

erant gain are identical. Furthermore, the fault tolerant gain achieves MIL-F-8785C

specifications for all failure conditions.



1.2 Contributions of the Work

• We havea new result for eigenstructureinvariancewhen it is known which surface
is most likely to fail. Wederiveda basisfor the subspacein which the eigenvectorsof
the failed systemmust lie. We showedmathematically that, if the jth control surface

will fail, then the jth row of the constant output feedback gain matrix will be simply

zero.

• We have obtained a passive fault tolerant flight control for a control surface failure

when it is not known in advance which surface will fail. We used an off-line multi-

objective optimization technique to design an optimal control for a predefined class

of control surface failures. We have shown that the time responses for tile unfailed

aircraft using the eigenstructure assignment gain and the fault tolerant gain are iden-

tical. Furthermore, the fault tolerant gain achieves MIL-F-8785C specifcations for all

failure conditions.

2 Application of Eigenstructure Assignment to Flight

Control Design

2.1 Literature Review

Consider an aircraft modelled by the linear time invariant matrix differential equation

described by

= Ax+Bu

y = Cx

(1)

(2)

where x is the state vector (n × 1), u the control vector (m × 1) and y the output

vector (r × 1). It is assumed that the m inputs and the r outputs are independent.

If there are no pilot commands, the feedback control vector u equals a matrix times

the ouput vector y:

u = -Fy (3)

Theorem [6]:

Given the controllable and observable system described by Eqs. 1 and 2, max(re, r)

closed loop eigenvalues can be assigned and max(re, r) eigenvectors (or reciprocal

vectors by duality) can be assigned with rain(m, r) entries in each vector arbitrarily

chosen using constant output feedback.

Andry et. al. [7] concluded that the eigenvectors vi must be in the subspace spanned

by the columns of ()_iI- A)-IB. This subspace is of dimension rn which is equal to

the number of independent control variables. Thus, if we choose an eigenvector v,



which lies precisely in the subspace spanned by the columns of (AiI - A)-IB, it will

be achieved exactly. In general, however, a desired eigenvector v/a will not reside in

the prescribed subspace and hence cannot be achieved.

Ref [7] gives a way to find the " best possible choice " for an achievable eigenvector.

This best possible eigenvector is the projection of v/d onto the subspace spanned by

the columns of (AiI- A)-IB (in the least square sense). In many practical situations,

complete specification of vi is neither required nor known, but rather the designer is

interested only in certain elements of the eigenvector. Thus, assume that vi has the

following structure:

V/d : [Vil , X, X, X, X, Vii , X, X, Vin] T

where vq are designer specified components and x is an unspecified component. De-

fine, as shown by Andry et. al. [7], a reordering operation { }P_ such that

where fi is a vector of specified components of v/a and di is a vector of unspecified

components of vd. The rows of the matrix (AJ- A)-IB are also reordered to conform

with the reordered components of v/d. Thus,

= Di (5)

Then, as shown by Andry et. al. [7], the acheivable eigenvector v_ is given by

v'_ =(AiI- A)-lBzi (6)

where zi = L_gi and where (.)t denotes the appropriate pseudoinverse of (.).

2.2 Problem Statement

We consider the linearized lateral dynamics of the F/A-18A aircraft. The rigid body

states are lateral(side) velocity(v), yaw rate (r), roll rate (p), and bank angle (_).

These states are augmented with first order actuator dynamics and a yaw rate washout

filter to yield a 9 th order model. The control surfaces are asymmetric stabilator (Ssc),

asymmetric trailing edge flaps ((_tec), ailerons (5_e), and rudder (5_). The inputs are

stabilator command ((_), trailing edge flaps command (_t_), ailerons command ((_,_),

and rudder command (d_). The measurements are sideslip angle (_), washed out yaw

rate (r_o), and roll rate (p). A control surface failure is modeled by setting the cor-

responding column in the control derivative matrix to zero. Each failure condition

corresponds to one control surface being fixed at its trim value.



The aircraft canbe describedby

k = Ax+Bu

y = Cx

where dim [x] = n, dim [u] = m, dim [y] = r, and where
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0 -30 0 0 0
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0 0 0 -30 0
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Observe that Eqs. (9)-(11) may be rewritten compactly as

(10)

(11)

-5Im 0m×(n-m) ]A = A21 A22

O(n-m)xm

c =

(12)

(13)

(14)

and the aircraft with a control surface failure may be described by

k = Alx + B_

y=Cx

(15)

(16)



where

Af = A + AA (17)

Om Om×(,_-m) 1 (18)AA = -/_ A21 O(n-m)x(n-m)
J

0 "" a(rn+l)j "'" 0

• , •

0 "'" anj ''' 0

/_ m21 = (19)

2.3 Eigenstructure Invariance for an Anticipated Flight Con-

trol Surface Failure

Consider an LTI plant which is augmented with first order actuator dynamics. Sup-

pose we know which control surface is most likely to fail. We seek a constant gain

output feedback controller such that the dominant eigenstructure is invariant under

this failure. We will show mathematically that the solution is that the surface which

will fail should not be used. That is, if the jth control surface will fail, then the

jth row of the constant output feedback gain matrix will be zero. We present some

interesting intermediate results. First we derive a basis for the subspace in which

the eigenvectors of the failed system must lie. Then we show that a constant out.put

feedback gain matrix exists which yields an invariant dominant eigenstructure both

before and after failure. Finally we show that the jth row of this feedback gain matrix

will be zero.
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Lemma 1:

Let Ad, i = 1, 2, ..., r be the set of desired eigenvalues.
A basis for the m-dimensional subspace spanned by the columns of (Adl - Af)-1B is

" CI_I_ 1

0

0
• ° o

given by

"Yl

0

0

a j5
0

0

_j

0

o (20)• . o

, _ OCmt _

(_'_+6)6a_t(A'_k); k = 1," "', mwhere ak = det(A l )

and "_ =[ "yl,'",'Ym ] = 5(Adj(A')):I
Proof of Lemma 1:

(_f+6)_ om×(.__)](A/a/- AI) = [ -A21 + AA:I AfI- A22
(21)

Let

Adj(AaiI-Af)

(AaiI- AI) -1 = det(Adi_ AI)

(AaiI- AI) = A 1

Let Adj(A 1) = [Cpq]r where the cofactors Cpq are given by

Cpq -- (-1F ÷q.det(A_q)

Due to the special structure of A 1, it follows that

(A d+5)-det(A_q) ifp=q, p,q=l,2,...,mCpq = 0 if p _ q, p,q = l,2,...,m

Therefore, the adjoint of A 1 may be written as

(A d + 5)F (Adj(Aa))12 ]
Adj(A 1)

(Adj(A1))21 (Adj(A1)):2 J

(22)

(23)

(24)

(25)

(26)



Where F = diag{ det(A]l ), det(A_2), " " , det(A_m) }

Finally

Adj(A1)•B 1 [ (A_+5)6F ](AdI- Af)-_B = det(A 1) = det(A1) " _(Adj(A_))21

Define

(Aid+ 5)at
(_- det(A 1)

(A_ +_)_det( A lkk)
OLk : det(A1 ) ; k = 1,. •., m

= [ _1,, _m] =_(AdY(A1))21

Then, the basis vectors are given by (20).

Theorem 1(Existence):

There exists a constant output feedback controller u = Fy such that:

(A I + BFC)v{ = (A + BFC)v[ = Adv ]•ii, i = 1,2,...,r

Proof of Theorem 1:

Use eq.(15) to obtain

(Af + BFC)v[ = (A + AA + BFC)v[ = (A + BFC)v[ + AAv[

Let the jth control surface fail• Then

0
AAv[ =

0

0._ 0rex(n-m)

"'" a(m+l)j "'" 0

• . . " • • • ' 0(n--m)x(_-m)

• • " anj • • • 0

v_

From lemma 1, v[ may be written as

(27)

(28)

(29)

(30)

(31)

(32)

" C_l( _

0

0
+...+_

0

0

O_j(_

0

0

7j

+ ... +_._

0

0

_'fm

(33)

I0



Observethat all the basisvectorshave a zero in row j with the exception of basis

vector j.

Choose/3j = 0. Then, AAv{ = 0 and (30) is proven.

Theorem 2(Gain Computation):

The constant feedback gain F from Theorem 1 has all zeros in row j.

Proof of Theorem 2:

Rewriting the eigenvalue-eigenvector equation we obtain

(A,I- Af)v{ = BFCv{ (34)

We partition (34) conformally mindful of the special structure of AI,B matrices.

(ai + 6)Im-A21 + AAm

Where

[(Ai+6)I_,

Thus

Let

(A_+_)ImZ,

Z= _ ,_ :

Therefore

Z =

and

F =

FCv f

Z(C,uf) -1

0m×(.-m) ][Z_t_] =6 [ I= Z,0(n--m)×,_ II',

(36)

0m×(,___)] W, 0,_×(n_,_) W, II; (37)

= 6FCv{;i = 1,...,r (38)

FCv{;i = 1,. • .,r (39)

A2+6 \ '-2' . .(, ., ] (40)

(42)

(43)

11



Finally,

So

Z i =

x

x

0

X

X

where the zero is in row j; j <_ m (44)

F 0 0 °'* 0 (45)

where the zeros are in row j of matrix Z. Then the result follows.

12



Example

\¥e use the plant described in Section 2.2. We consider the rudder failure which is

modeled by setting the 4th column of the control derivative matrix to zero.

First, we design an eigenstructure assignment controller for the unfailed condition by

assigning the dutch roll mode to have a damping of 0.707 and a natural frequency of

2.83 r/s. The roll subsidence mode is assigned to its open loop value of-2.76. The

desired dutch roll eigenvectors are chosen for a sideslip and yaw rate mode which is

decoupled from the roll rate and bank angle. The desired roll subsidence eigenvector

is chosen for a roll rate mode which is decoupled from vertical velocity and yaw rate.

Table 1 shows the output feedback matrix computed for the unfailed aircraft. Tile

initial condition responses using the eigenstructure assignment gain computed for the

no failure condition are shown in Figure 1. Observe the degradation in the response

after failure.

Next, we compute an optimal feedback gain using Theorem 2 by imposing simuha-

neous specifications on the unfailed and rudder failure conditions. We require the

dutch roll and roll modes for both the unfailed and failed conditions to be the same

as for the eigenstructure assignment controller. Furthermore, we require that the

fourth row of the dutch roll and roll eigenvectors be zero for both the unfailed and

failed conditions. Table 2 shows the output feedback gain matrix. Observe that the

fourth row of this gain matrix is exactly zero. The initial condition responses using

the optimal gain are shown in Figure 2. Observe that the eigenstructure invariance

is achieved but with increased coupling to roll rate and bank angle. To reduce the

coupling, the number of eigenvector objectives is reduced by only requiring the fourth

row of the dutch roll eigenvector to be zero. The feedback gain matrix is shown in

Table 3 where we observe that the gains in the fourth row are small but nonzero. The

initial condition responses using this optimal gain are shown in Figure 3. \Ve observe

that the coupling to roll rate and bank angle has been significantly reduced, albeit at

the expense of exact eigenstructure invariance.

Table 1: Gain matrix computed for no failure

rwo p

0.2412 0.0562 -0.0009 stabilator

0.1317 0.1742 0.0038 trailing edge flap

0.1352 0.1918 0.0047 aileron

-0.8366 0.9019 0.0379 rudder

13



Table 2: Gain using theorem (dutch roll and roll modes)

fl two P

-9.1724 -5.6198 -0.2616 stabilator

4.7829 4.8542 0.1423 trailing edge flap

-13.0675 5.2913 0.2041 aileron

0 0 0 rudder

Table 3: Gain using theorem (dutch roll only)

r_o p

8.2678 -7.6184 -0.1597 stabilator

-4.0159 2.7116 0.0564 trailing edge flap

-3.9988 4.5213 0.0944 aileron

0.0613 0.0298 0.0198 rudder

14
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2.4 Passive Fault Tolerant Control for an Unknown Control

Surface Failure

We have designed an optimal gain which is tolerant to a control surface failure. The

class of control surface failures we consider includes the symmetric failure of any one

control surface with the surface being stuck at its trim value. It is not known in ad-

vance which surface will fail. We compare an eigenstructure assignment gain designed

for the unfailed aircraft with a multiobjective optimization gain designed to achieve

(1) the same response for the unfailed conditon as was obtained using eigenstructure

assignment and (2) MIL-F-8785C specifications for all failure conditions belonging to

our class.

We use program ATTGOAL from the MATLAB Optimization Toolbox [8] to solve the

multiobjective goal attainment problem described by minimize 7 such that
x,'/

F(x) - w7 <_ goal where F(x), w, and goal are given.

The function F(x) is the objective function to be minimized at the point x. ATTGOAL

attempts to minimize the function values to attain the goal values given by goal.

Alternatively, to make an objective function as near as possible to a goal value, op-

tions(15) is set equal to the number of objectives required to be in the neighborhood

of goal values. These objectives must be partitioned into the first elements of the

function F(x). Goal is a vector of values that the objectives attempt to attain. The

weighting vector w is used to control the relative under-attainment or over-attainment

of the objectives. The weighting function may be set to w = abs(goal) to obtain the

same percentage of under or over-attainment. When w is positive, ATTGOAL at-

tempts to make the objectives less than the goal values. To make the objective

functions greater than the goal values, w is set to be negative.

We consider the linearized lateral dynamics of the F/A-18A aircraft which was de-

scribed in Section 2.2. We design an eigenstructure assignment controller for the

unfailed condition by assigning the dutch roll mode to have a damping of 0.707 and

a natural frequency of 2.83 r/s. The roll subsidence mode is assigned to its open loop

value of-2.76. Ttle desired dutch roll eigenvectors are chosen for a sideslip and yaw

rate mode which is decoupled from the roll rate and bank angle. The desired roll

subsidence eigenvector is chosen for a roll rate mode which is decoupled from vertical

velocity and yaw rate.

Table 4 shows the dutch roll and roll subsidence mode desired eigenvectors, the eigen-

vectors from the projection onto the achievable subspaces, and the eigenvectors of

(A + BFC). First, we remark that the entries in the imaginary part of the dutch roll

eigenvectors, which we desire to be zero, are not zero after projecting onto the achiev-

18



Table 4: Desired and Achievable Eigenvectors (actuator entries not shown)

Desired Projection (A + BFC)

D.R. R. D.R. R. D.R. R.

1 +3x 0 1 +j0 0.0001 1 - j59.4 0.0001 v

x + 31 0 0.0028 +3'1 -0.0168 0.0032 + 31 -0.0168 r

0 + jO 1 -0.0137 + j3.83 1 -0.012 + j5.24 1 p

O+jO x 0.0006+j2.14 -0.362 -0.0003-j2.52 -0.362

x+jx 0 -0.0008 +j0.034 0.0037 -0.0008+j0.08 0.0037 Xu

able subspace. This will cause coupling to the roll rate response. The reason that we

do not achieve the zero eigenvector entries is that the Li are poorly conditioned. So

to achieve a gain matrix with reasonable magnitude, we discard the smallest singular

value when computing the pseudo inverse to obtain zi. If less coupling is required

then another choice for the desired dutch roll eigenvectors should be made which

specifies fewer entries. Second, we remark that we have r < m which is different from

most aerospace applications of eigenstructure assignment which have appeared in the

literature. Some authors have suggested assigning the left eigenvectors when r < m.

However, the right eigenvectors still lie in the subspaces spanned by the colunms of

(kiI - A)-aB. Since we only assign r eigenvalues, we can also assign m entries in the

corresponding eigenvectors. This is independent of the relation between r and m.

The feedback gain matrix is shown in Table 5. The sideslip angle responses to a

one degree initial sideslip for the unfailed and four failure conditions are shown in

Figure 4 where the oscillitory response corresponds to a rudder failure. We remark

that the response is unacceptable when a rudder failure occurs. In fact. the dutch

roll damping is only _ = 0.18 when a rudder failure occurs. This is signficantly less

than the minimum value of ff = 0.4 which is required in MIL-F-8785C. We further

remark that the asymmetric stabilator, asymmetric trailing edge flaps, and ailerons

are all good producers of rolling moment, but only rudder is a good producer of

yawing moment. Thus, a rudder failure is the most difficult condition for achieving

desirable handling qualities. Next, we design an optimized controller by imposing

Table 5: Eigenstructure Assignment Feedback Gain Matrix

/_ rwo P

0.2412 0.0562 -0.0009 stabilator

0.1317 0.1742 0.0038 trailing edge flap

0.1352 0.1918 0.0047 aileron

-0.8366 0.9019 0.0379 rudder

19



simultaneous specifications on the unfailed and four failure condtions. We use the

multiobjective optimization method which is implemented in the MATLAB Opti-

mization Toolbox [8] program ATTGOAL. Our objective is for the optimal unfailed

responses to be the same as the eigenstructure assignment unfailed responses while

also achieving MIL-F-8785C specifications for the failed responses. The MIL-F-8785C

specifications for Level 1, Category A (CO and GA), Class IV flight are as follows:

dutch roll damping and natural frequency greater than 0.4 and 1.0, respectively; roll

subsidence time constant less than 1 second; and spiral time to double amplitude

greater than 12 seconds. We remark that the eigenstructure assignment controller

achieves all these specifications with the exception of the dutch roll damping which

is 0.18 when a rudder failure occurs.
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Figure 4: Sideslip angle responses
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We compute an optimal feedback gain using the following objectives: (1) the

dutch roll and roll subsidence modes are to be the same as for the eigenstructure

assignment controller, and (2) the dutch roll and roll subsidence modes are to achieve

MIL-F-8785C specifications for the four failure conditions. We remark that we cannot

directly specify the spiral mode when using a stability augmentation system (SAS)

which does not feedback bank angle.

The optimization parameters are (1) the real part of the dutch roll eigenvalue Re(Adr),

(2) the imaginary part of the dutch roll eigenvalue Im(Adr), (3) the roll subsidence

eigenvalue Aro,, (4) the free eigenvector parameters Zrou for the roll subsidence mode,

and (5) the free eigenvector parameters zar for the dutch roll mode where real arith-

metic is used. The parameters are initialized at the values obtained when using the

eigenstructure assignment gain.

The objectives and weightings at the unfailed condition are

Atoll = --2.76 , w = abs(-2.76)

Re(Adr) = -2 , w = abs(-2)

]m(Adr)=2 , w=abs(2)

The objectives and weightings at the 4 failure conditions are

£_r_>0.4 , W'=--I; i=1,...,4

(Wn)_r_>l.0 , W i=-l; i=1,...,4

The optimal gain is shown in Table 6 which required 2.04 seconds of CPU time and

52 function evaluations. The sideslip angle response to a one degree initial sideslip is

shown in Figure 4. We observe that all responses achieve the desired specifications.

The dutch roll damping _dr is now 0.4 for the rudder failure conditon which achieves

the MIL-F-8785C specification. The yaw rate responses for an initial sideslip for the

Table 6: Optimal Feedback Gain Matrix

two P

5.2056 -2.851 -0.0605 stabilator

-2.1993 1.4108 0.0292 trailing edge flap

-2.651 1.9134 0.0400 aileron

-0.0766 0.4808 0.0293 rudder

eigenstructure assignment and multiobjective optimaization gains are shown in Figure
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5. Again weobservethat the eigenstructureassignmentgain exhibits all unaccept-
able oscillation when rudder failure occurswhereasthe multiobjective optimization
gain yields an acceptableresponse. The roll rate responsesfor the eigenstructure
assignmentand multiobjective optimization gains are shown in Figure 6. Here we
observethat the roll rate responsewith the multiobjective optimization gain exhibits
a significant coupling when a stabilator failure occurs. The bank angle responses
for the eigenstructureassignmentand multiobjective optimization gainsareshownin
Figure 7. Again, weobservethat the responsewith the multiobjective optimization
gain exhibits a significant coupling when a stabilator failure occurs. However, the
MIL-F-8785C specificationon sideslipto bank anglecoupling is that the minimum
_w,, is increasedif > 2o. For our aircraft with a stabilator failure we have

aj_I¢/BI < (2.83)2(2.2) = 17.6 < 20. Therefore, our responses meet the MIL spec-

ification even though a smaller sideslip to bank angle coupling may be desirable.

The responses for the unfailed aircraft to an initial sideslip are shown in Figure 8

for both the eigenstructure assignment and multiobjective optimization gains. We

observe that that the sideslip and yaw rate responses are identical and there is only

an insignificant degradation in the coupling to roll rate. Figure 9 shows the responses

using both gains for the unfailed aircraft until time t = 0.5 see when a rudder failure

occurs. We observe that the eigenstructure assignment gain allows oscilllation and

large settling time whereas the multiobjective optimization gain yields an acceptable

response after failure.
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